Practical Deep Neural Networks

GPU computing perspective
Recurrent Neural Networks

Yuhuang Hu Chu Kiong Loo

Advanced Robotic Lab
Department of Artificial Intelligence
Faculty of Computer Science & IT
University of Malaya
Outline

1. Introduction
2. SRN
3. LSTM
4. Sequence Modeling
5. Q&A
Outline

1. Introduction
2. SRN
3. LSTM
4. Sequence Modeling
5. Q&A
Assumed prerequisites

- Neural Computation (DL book chapter 4)
- Machine Learning Basics (DL book chapter 5)
- MLP Networks (DL book chapter 6)
Deep Learning book Chapter 10: Sequence Modeling: Recurrent Recursive Nets
CS224d: GRUs and LSTMs – for machine translation
The Unreasonable Effectiveness of Recurrent Neural Networks
LSTM: A Search Space Odyssey
Supervised Sequence Labelling with Recurrent Neural Networks
SRN architecture
SRN architecture

\[
y_{h}^{t} = f_{h}(W_{i}x^{t} + W_{h}y^{t-1})
\]
\[
y_{o}^{t} = f_{o}(W_{o}y_{h}^{t})
\]

where \(W_{h}, W_{i}, o \) are the hidden, input and output weight matrices, \(x^{t} \) is the input vector, and \(y_{h}^{t} \) is a vector representing the activation of hidden units at time step \(t \). Functions \(f_{h}(\cdot) \) and \(f_{o}(\cdot) \) are non-linear functions.
Outline

1. Introduction
2. SRN
3. LSTM
4. Sequence Modeling
5. Q&A
LSTM architecture
LSTM architecture

\[z^t = g(W_z x^t + R_z y^{t-1} + b_z) \quad \text{block input} \]
\[i^t = \sigma(W_i x^t + R_i y^{t-1} + p_i \odot c^{t-1} + b_i) \quad \text{input gate} \]
\[f^t = \sigma(W_f x^t + R_f y^{t-1} + p_f \odot c^{t-1} + b_f) \quad \text{forget gate} \]
\[c^t = i^t \odot z^t + f^t \odot c^{t-1} \quad \text{cell state} \]
\[o^t = \sigma(W_o x^t + R_o y^{t-1} + p_o \odot c^t + b_o) \quad \text{output gate} \]
\[y^t = o^t \cdot h(c^t) \quad \text{block output} \]

Here \(x^t \) is the input vector at time \(t \), the \(W \) are rectangular matrices, the \(R \) are square recurrent weight matrices, the \(p \) are peehole weights vectors and \(b \) are bias vectors. Functions \(\sigma \), \(g \) and \(h \) are point-wise non-linear activation functions: logistic sigmoid is used for as activation function of the gates and hyperbolic tangent is usually used as the block input and output activation function. The point-wise multiplication of two vectors is denoted with \(\odot \)
Outline

1. Introduction
2. SRN
3. LSTM
4. Sequence Modeling
5. Q&A
Modes of Processing

Left to right: (a) fixed-size input to fixed-size output (e.g. image classification); (b) sequence output (e.g. image captioning); (c) sequence input (e.g. sentiment analysis); (d) sequence input and sequence output (e.g. machine translation); (e) synced sequence input and output (e.g. video classification)
Example: character prediction

Figure: Predict “hello”
Example: image captioning

Sequence Modeling

Yuhuang Hu, Chu Kiong Loo (UM)
Outline

1. Introduction
2. SRN
3. LSTM
4. Sequence Modeling
5. Q&A
Q&A

Hey Bert, ask if it has a favourite colour.

N. Harding